A-10 Analog Pressure Sensor

Reads

Range
Resolution

Accuracy

Connector

Response Time

Data protocol
Data format

Operating voltage
Durability

Pressure (PSIG)

10 PSIG (68.947 kPa)
1 mv (.0025 PSI /0.017 kPa)
$< \pm 0.1$ PSI (0.689 kPa)

Tinned leads
$<1 \mathrm{~ms}$

Analog voltage
0.5 VDC - 4.5 VDC

5 VDC

IP67

Specifications

Body material
Cable length
Connector
Weight
Threading
Sterilization

304L Stainless steel
0.9 meters ($\mathbf{3}^{\prime \prime}$)

Tinned leads
121.3 grams

1/4 NPT
Chemical only

Analog out

Absolute max ratings

VCC
Output current
Operating temperature Proof pressure Burst pressure

Power consumption
$5 \mathrm{~V} \quad 6 \mathrm{~mA}$

Operating principle

Internally the pressure sensor uses a piezoresistive semiconducting element. The semiconducting element (a silicon wafer) changes its resistance in proportion to pressure. As the pressure increases the atomic spacing of the silicon atoms decreases, this in turn lowers the resistance of the silicon wafer.

Atmospheric pressure
$1 \mathrm{M} \Omega$

10 PSI (68.947 kPa) 500K Ω

An on-board microcontroller monitors the resistance and temperature of the semiconducting element. By combining these two parameters, the microcontroller computes the pressure and convert it into an analog voltage.

Analog Output $=0.5-4.5$ VDC

\author{

Pressure

 0 PSI (atmosphere)
 2 psi
 4 psi
 6 psi
 8 psi
 10 psi}

Volts

0.5
1.3
2.1
2.9
3.7
4.5

Voltage to PSI equation

PSI $=2.5 \times$ (Volts) -1.25
Voltage to kPa equation
$\mathrm{kPa}=17.237 \times($ Volts $)-8.6185$

When the sensor is not under any pressure it may read a slight negative pressure. It is common to see negative readings from $\mathbf{- 0 . 0 1}$ to $\mathbf{- 0 . 0 4}$. This is due to floating point error when the sensor is not under pressure and should be ignored.

Typical applications

OK

Submerge

